If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=128Y^2-2
We move all terms to the left:
-(128Y^2-2)=0
We get rid of parentheses
-128Y^2+2=0
a = -128; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-128)·2
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32}{2*-128}=\frac{-32}{-256} =1/8 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32}{2*-128}=\frac{32}{-256} =-1/8 $
| (5n+4)(8n+5)=0 | | 113x-1+68=180 | | x/(x+16)=30/40 | | 21x-133=47 | | x/x+16=30/40 | | 2/9(x+2)-1/3=2/3x-5-4/9x | | 3/4(-8x+20)=-8(x-3) | | 25^x=125^x^-^7 | | 2x+4-3x=16+5x-6 | | x(43.75-x)=300 | | -9u+22=-4(u+2) | | -2(v+8)=-8v+38 | | 5v-49=9(v-9) | | (-56+15r)=r | | 7c+7+c+16+3c+3=180 | | x+94=243 | | 40+40+b-23=180 | | 32s+33s+s+48=180 | | 2x^2+6=60 | | 99+3t+t+17=180 | | 52+2p+2p=180 | | 20x+17x+8x=180 | | 5(z+11/4)=-6z-13/6 | | 59+8s+3s=180 | | 5u+2u+2u=180 | | 36+10b+8b=180 | | 2y+6=2(1=2y) | | 9x+6+4x+5=180 | | 12x-8=18x+6 | | -4(-8y-3)=-4(3y-2) | | -6+5d=410 | | 25.812-4.2d=31.311-5.5d |